Determinants Matrices Question 45

Question: The value of the determinant $ \begin{vmatrix} {{\cos }^{2}}54{}^\circ & {{\cos }^{2}}36{}^\circ & \cot 135{}^\circ \\ {{\sin }^{2}}53{}^\circ & \cot 135{}^\circ & {{\sin }^{2}}37{}^\circ \\ \cot 135{}^\circ & cos^{2}25{}^\circ & {{\cos }^{2}}65{}^\circ \\ \end{vmatrix} $ is equal to

Options:

A) $ -2 $

B) $ -1 $

C) $ 0 $

D) $ 1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \Delta = \begin{vmatrix} {{\cos }^{2}}54{}^\circ & {{\cos }^{2}}36{}^\circ & \cot 135{}^\circ \\ {{\sin }^{2}}53{}^\circ & \cot 135{}^\circ & {{\sin }^{2}}37{}^\circ \\ \cot 135{}^\circ & {{\cos }^{2}}25{}^\circ & {{\cos }^{2}}65{}^\circ \\ \end{vmatrix} $

$ = \begin{vmatrix} {{\cos }^{2}}54{}^\circ & {{\sin }^{2}}54{}^\circ & -1 \\ {{\cos }^{2}}37{}^\circ & -1 & {{\sin }^{2}}37{}^\circ \\ -1 & {{\cos }^{2}}25{}^\circ & {{\sin }^{2}}25{}^\circ \\ \end{vmatrix} $

$ C_1\to C_1+C_2+C_3 $

$ = \begin{vmatrix} {{\cos }^{2}}54{}^\circ +{{\sin }^{2}}54{}^\circ -1 & {{\sin }^{2}}54{}^\circ & -1 \\ {{\cos }^{2}}37{}^\circ -1+{{\sin }^{2}}37{}^\circ & -1 & {{\sin }^{2}}37{}^\circ \\ -1+{{\cos }^{2}}25{}^\circ +{{\sin }^{2}}25{}^\circ & {{\cos }^{2}}25{}^\circ & {{\sin }^{2}}25{}^\circ \\ \end{vmatrix} $

$ = \begin{vmatrix} & \begin{matrix} 0 & {{\sin }^{2}}54{}^\circ -1 \\ \end{matrix} \\ & \begin{matrix} 0 & -1{{\sin }^{2}}37{}^\circ \\ \end{matrix} \\ & \begin{matrix} 0 & {{\cos }^{2}}25{}^\circ {{\sin }^{2}}25{}^\circ \\ \end{matrix} \\ \end{vmatrix} =0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें