Determinants Matrices Question 45

Question: The value of the determinant $ \begin{vmatrix} {{\cos }^{2}}54{}^\circ & {{\cos }^{2}}36{}^\circ & \cot 135{}^\circ \\ {{\sin }^{2}}53{}^\circ & \cot 135{}^\circ & {{\sin }^{2}}37{}^\circ \\ \cot 135{}^\circ & cos^{2}25{}^\circ & {{\cos }^{2}}65{}^\circ \\ \end{vmatrix} $ is equal to

Options:

A) $ -2 $

B) $ -1 $

C) $ 0 $

D) $ 1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \Delta = \begin{vmatrix} {{\cos }^{2}}54{}^\circ & {{\cos }^{2}}36{}^\circ & \cot 135{}^\circ \\ {{\sin }^{2}}53{}^\circ & \cot 135{}^\circ & {{\sin }^{2}}37{}^\circ \\ \cot 135{}^\circ & {{\cos }^{2}}25{}^\circ & {{\cos }^{2}}65{}^\circ \\ \end{vmatrix} $

$ = \begin{vmatrix} {{\cos }^{2}}54{}^\circ & {{\sin }^{2}}54{}^\circ & -1 \\ {{\cos }^{2}}37{}^\circ & -1 & {{\sin }^{2}}37{}^\circ \\ -1 & {{\cos }^{2}}25{}^\circ & {{\sin }^{2}}25{}^\circ \\ \end{vmatrix} $

$ C_1\to C_1+C_2+C_3 $

$ = \begin{vmatrix} {{\cos }^{2}}54{}^\circ +{{\sin }^{2}}54{}^\circ -1 & {{\sin }^{2}}54{}^\circ & -1 \\ {{\cos }^{2}}37{}^\circ -1+{{\sin }^{2}}37{}^\circ & -1 & {{\sin }^{2}}37{}^\circ \\ -1+{{\cos }^{2}}25{}^\circ +{{\sin }^{2}}25{}^\circ & {{\cos }^{2}}25{}^\circ & {{\sin }^{2}}25{}^\circ \\ \end{vmatrix} $

$ = \begin{vmatrix} & \begin{matrix} 0 & {{\sin }^{2}}54{}^\circ -1 \\ \end{matrix} \\ & \begin{matrix} 0 & -1{{\sin }^{2}}37{}^\circ \\ \end{matrix} \\ & \begin{matrix} 0 & {{\cos }^{2}}25{}^\circ {{\sin }^{2}}25{}^\circ \\ \end{matrix} \\ \end{vmatrix} =0 $