Determinants Matrices Question 47
Question: If $ \begin{vmatrix} x^{n} & {x^{n+2}} & x^{2n} \\ 1 & x^{a} & a \\ {x^{n+5}} & {x^{a+6}} & {x^{2n+5}} \\ \end{vmatrix}=0\forall x\in R, $ where $ n\in N $ then value of ‘a’ is
Options:
A) $ n $
B) $ n-1 $
C) $ n+1 $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
- [c] Taking   $ x^{5} $    common from last row, we get,   $ x^{5} \begin{vmatrix}    x^{n} & {x^{n+2}} & x^{2n}  \\    1 & x^{a} & a  \\    x^{n} & {x^{a+1}} & x^{2n}  \\ \end{vmatrix}=0x\in R, $   
 $ \Rightarrow a+1=n+2\Rightarrow a=n+1 $ (as it will make first and third row identical)
 BETA
  BETA 
             
             
           
           
           
          