Determinants Matrices Question 48

Question: If the system of equations $ \lambda x_1+x_2+x_3=1, $

$ x_1+\lambda x_2+x_3=1, $

$ x_1+x_2+\lambda x_3=1 $ is consistent, then $ \lambda $ can be

Options:

A) $ 5 $

B) $ -2/3 $

C) $ -3 $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] Let $ \Delta = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \\ \end{vmatrix}= \begin{vmatrix} \lambda +2 & 1 & 1 \\ \lambda +2 & \lambda & 1 \\ \lambda +2 & 1 & \lambda \\ \end{vmatrix} $

$ [C_1\to C_1+C_2+C_3] $

$ =(\lambda +2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \\ \end{vmatrix}=(\lambda +2) \begin{vmatrix} 1 & 0 & 0 \\ 1 & \lambda -1 & 0 \\ 1 & 0 & \lambda -1 \\ \end{vmatrix} $

$ =(\lambda +2){{(\lambda -1)}^{2}} $ [using $ C_2\to C_2-C_1 $ and $ C_3\to C_3-C_1 $ ] If $ \Delta =0 $ , then $ \lambda =-2 $ or $ \lambda =1 $ . But when $ \lambda =1 $ , the system of equation becomes $ x_1+x_2+x_3=1 $ which has infinite number of solutions. When $ \lambda =-2 $ , by adding three equations, we obtain $ 0=3 $ and thus, the system of equations is inconsistent.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें