Determinants Matrices Question 5
Question: Let $ \Delta = \begin{vmatrix} 1+x_1y_1 & 1+x_1y_2 & 1+x_1y_3 \\ 1+x_2y_1 & 1+x_2y_2 & 1+x_2y_3 \\ 1+x_3y_1 & 1+x_3y_2 & 1+x_3y_3 \\ \end{vmatrix} $ then value of $ \Delta $ is
Options:
A) $ x_1x_2x_3+y_1y_2y_3 $
B) $ x_1x_2x_3y_1y_2y_3 $
C) $ x_2x_3y_2y_3+x_3x_1y_3y_1+x_1x_2y_1y_2 $
D) 0
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] We can write   $ \Delta ={\Delta_1}+y_1{\Delta_2}, $    where   $ {\Delta_1}= \begin{vmatrix}    1 & 1+x_1y_2 & 1+x_1y_3  \\    1 & 1+x_2y_2 & 1+x_2y_3  \\    1 & 1+x_3y_2 & 1+x_3y_3  \\ \end{vmatrix} $    and   $ {\Delta_2}= \begin{vmatrix}    x_1 & 1+x_1y_2 & 1+x_1y_3  \\    x_2 & 1+x_2y_2 & 1+x_2y_3  \\    x_3 & 1+x_3y_2 & 1+x_3y_3  \\ \end{vmatrix} $    In   $ {\Delta_1}, $    use   $ C_2\to C_2-C_1 $    and   $ C_3\to C_3-C_1 $    so that,   $ {\Delta_1}= \begin{vmatrix}    1 & x_1y_2 & x_1y_3  \\    1 & x_2y_2 & x_2y_3  \\    1 & x_3y_2 & x_3y_3  \\ \end{vmatrix}=0 $    [  $ \because C_2 $    and   $ C_3 $    are proportional] In    $ {\Delta_2}, $    us   $ C_2\to C_2-y_2C_1 $    and   $ C_3\to C_3-y_3C_1 $    to get   $ {\Delta_2}= \begin{vmatrix}    x_1 & 1 & 1  \\    x_2 & 1 & 1  \\    x_3 & 1 & 1  \\ \end{vmatrix}=0 $    [  $ \because C_2 $    and   $ C_3 $    are identical]
 $ \therefore \Delta =0 $
 BETA
  BETA 
             
             
           
           
           
          