Determinants Matrices Question 57

Question: sLet $ A= \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} $ and $ B= \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} $ where a, b are natural numbers, then which one of the following is correct-

Options:

A) There exist more than one but finite number of B’s such that AB = BA

B) There exists exactly one B such that AB = BA

C) There exist infinitely many B’s such that AB=BA

D) There cannot exist any B such that AB = BA

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ AB= \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} = \begin{bmatrix} a & 2b \\ 3a & 4b \\ \end{bmatrix} $ and $ BA= \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \\ \end{bmatrix} $ If $ AB=BA $
    $ \Rightarrow \begin{bmatrix} a & 2b \\ 3a & 4b \\ \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \\ \end{bmatrix} \Rightarrow a=b $ From the above it is clear that there exist infinitely many B’s such that AB = BA.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें