Determinants Matrices Question 57

Question: sLet $ A= \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} $ and $ B= \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} $ where a, b are natural numbers, then which one of the following is correct-

Options:

A) There exist more than one but finite number of B’s such that AB = BA

B) There exists exactly one B such that AB = BA

C) There exist infinitely many B’s such that AB=BA

D) There cannot exist any B such that AB = BA

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ AB= \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} = \begin{bmatrix} a & 2b \\ 3a & 4b \\ \end{bmatrix} $ and $ BA= \begin{bmatrix} a & 0 \\ 0 & b \\ \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \\ \end{bmatrix} $ If $ AB=BA $
    $ \Rightarrow \begin{bmatrix} a & 2b \\ 3a & 4b \\ \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \\ \end{bmatrix} \Rightarrow a=b $ From the above it is clear that there exist infinitely many B’s such that AB = BA.