Determinants Matrices Question 62

Question: If $ f(x)= \begin{vmatrix} {x^{n-1}} & \cos x & \frac{1}{x+3} \\ 0 & \cos \frac{n\pi }{2} & \frac{{{(-1)}^{n}}n!}{{3^{n+1}}} \\ \alpha & {{\alpha }^{3}} & {{\alpha }^{5}} \\ \end{vmatrix} $ then $ \frac{d^{n}}{dx^{n}}{{[f(x)]} _{x=0}}= $

Options:

A) $ 1 $

B) $ -1 $

C) $ 0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] We have, $ \frac{d^{n}}{dx^{n}}[f(x)]= \begin{vmatrix} 0 & \cos ( x+\frac{n\pi }{2} ) & \frac{{{(-1)}^{n}}n!}{{{(x+3)}^{n+1}}} \\ 0 & \cos \frac{n\pi }{2} & \frac{{{(-1)}^{n}}n!}{{3^{n+1}}} \\ \alpha & {{\alpha }^{3}} & {{\alpha }^{5}} \\ \end{vmatrix} $
    $ \therefore \frac{d^{n}}{dx^{n}}{{[f(x)]} _{x=0}}= \begin{vmatrix} 0 & \cos \frac{n\pi }{2} & \frac{{{(-1)}^{n}}n!}{{3^{n+1}}} \\ 0 & \cos \frac{n\pi }{2} & \frac{{{(-1)}^{n}}n!}{{3^{n+1}}} \\ \alpha & {{\alpha }^{3}} & {{\alpha }^{5}} \\ \end{vmatrix}=0 $

$ (\because R_1andR_2areidentical) $