Determinants Matrices Question 66

Question: If $ A_1B_1C_1, $

$ A_2B_2C_2 $ and $ A_3B_3C_3 $ are three digit numbers, each of which is divisible by k, then $ \Delta = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \\ \end{vmatrix} $ is

Options:

A) Divisible by k

B) Divisible by $ k^{2} $

C) Divisible by $ k^{3} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Since, $ A_1B_1C_1,A_2B_2C_2 $ and $ A_3B_3C_3 $ are divisible by k, therefore; $ 100A_1+10B_1+C_1=n_1k; $

$ 100A_2+10B_2+C_2 $

$ =n_2k;100A_3+10B_3+C_3=n_3k $ (where $ n_1,n_2,n_3 $ are integers) $ Now,\Delta = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \\ \end{vmatrix} $

$ = \begin{vmatrix} A_1 & B_1 & 100A_1+10B_1+C_1 \\ A_2 & B_2 & 100A_2+10B_2+C_2 \\ A_3 & B_3 & 100A_3+10B_2+C_3 \\ \end{vmatrix} $

[Applying $ C_3\to C_3+10C_2+100C_1 $ ] $ = \begin{vmatrix} A_1 & B_1 & n_1k \\ A_2 & B_2 & n_2k \\ A_3 & B_3 & n_3k \\ \end{vmatrix}=k \begin{vmatrix} A_1 & B_1 & n_1 \\ A_2 & B_2 & n_2 \\ A_3 & B_3 & n_3 \\ \end{vmatrix}=k{\Delta_1} $
$ \Rightarrow \Delta $ is divisible by k [Since, elements of $ {\Delta_1} $ are integers
$ \therefore {\Delta_1} $ is an integer.]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें