Determinants Matrices Question 7
Question: If $ A= \begin{bmatrix} a & b \\ 0 & a \\ \end{bmatrix} $ is nth root of $ I_2 $ , then choose the correct statements:
(i) if n is odd,   $ a=1,b=0 $
(ii) in n is odd,   $ a=-1,b=0 $
(iii) if n is even,   $ a=1,b=0 $
(iv) if n is even,   $ a=-1,b=0 $
Options:
A) i, ii, iii
B) ii, iii, iv
C) i, ii, iii, iv
D) i, iii, iv
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] if A is nth root of $ I_2 $ , then $ A^{n}=I_2 $ . Now, $ A^{2}= \begin{bmatrix} a & b \\ 0 & a \\ \end{bmatrix} \begin{bmatrix} a & b \\ 0 & a \\ \end{bmatrix} = \begin{bmatrix} a^{2} & 2ab \\ 0 & a^{2} \\ \end{bmatrix} $
$ A^{3}=A^{2}A= \begin{bmatrix}    a^{2} & 2ab  \\    0 & a^{2}  \\ \end{bmatrix}  \begin{bmatrix}    a & b  \\    0 & a  \\ \end{bmatrix} = \begin{bmatrix}    a^{3} & 3a^{2}b  \\    0 & a^{3}  \\ \end{bmatrix}  $   Thus,   $ A^{n}= \begin{bmatrix}    a^{n} & n{a^{n-1}}b  \\    0 & a^{n}  \\ \end{bmatrix}  $    Now,   $ A^{n}=I\Rightarrow  \begin{bmatrix}    a^{n} & n{a^{n-1}}b  \\    0 & a^{n}  \\ \end{bmatrix} = \begin{bmatrix}    1 & 0  \\    0 & 1  \\ \end{bmatrix}  $   
$ \Rightarrow a^{n}=1,b=0 $
 BETA
  BETA 
             
             
           
           
           
          