Determinants Matrices Question 70

Question: If $ A= \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \\ \end{bmatrix} , $ then the value of $ |adjA| $ is

Options:

A) $ a^{27} $

B) $ a^{9} $

C) $ a^{6} $

D) $ a^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ Cofactormatrix= \begin{bmatrix} a^{2} & 0 & 0 \\ 0 & a^{2} & 0 \\ 0 & 0 & a^{2} \\ \end{bmatrix} $
    $ \therefore $ adj A = (cofactor matrix) $ = \begin{bmatrix} a^{2} & 0 & 0 \\ 0 & a^{2} & 0 \\ 0 & 0 & a^{2} \\ \end{bmatrix} $
    $ \therefore | adjA |= \begin{bmatrix} a^{2} & 0 & 0 \\ 0 & a^{2} & 0 \\ 0 & 0 & a^{2} \\ \end{bmatrix} =a^{6} $