Determinants Matrices Question 71

Question: Let $ S _{k}={{\alpha }^{k}}+{{\beta }^{k}}+{{\gamma }^{k}}, $ then $ \Delta = \begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ \end{vmatrix} $ is equal to

Options:

A) $ S_6 $

B) $ S_5-S_3 $

C) $ S_6-S_4 $

D) None

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ \Delta \begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ \end{vmatrix} $

$ = \begin{vmatrix} 1+1+1 & \alpha +\beta +\gamma & {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \\ \alpha +\beta +\gamma & {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} & {{\alpha }^{3}}+{{\beta }^{3}}+{{\gamma }^{3}} \\ {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} & {{\alpha }^{3}}+{{\beta }^{3}}+{{\gamma }^{3}} & {{\alpha }^{4}}+{{\beta }^{4}}+{{\gamma }^{4}} \\ \end{vmatrix} $ The above determinant can be expressed as product of two determinants. Thus, $ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ {{\alpha }^{2}} & {{\beta }^{2}} & {{\gamma }^{2}} \\ \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ {{\alpha }^{2}} & {{\beta }^{2}} & {{\gamma }^{2}} \\ \end{vmatrix} $

$ ={{[(\beta -\alpha )(\gamma -\alpha )(\gamma -\beta )]}^{2}} $