Determinants Matrices Question 72

Question: If $ {\Delta _{r}}= \begin{vmatrix} r-1 & n & 6 \\ {{(r-1)}^{2}} & 2n^{2} & 4n-2 \\ {{(r-1)}^{2}} & 3n^{3} & 3n^{2}-3n \\ \end{vmatrix}, $ then $ \sum\limits _{r=1}^{n}{{\Delta _{r}}} $ is.

Options:

A) $ 0 $

B) $ 1 $

C) $ 3 $

$ -1 $

D)

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Since $ C_1 $ has variable terms and $ C_2 $ and $ C_3 $ are constant, summation runs on $ C_1 $ . Therefore, $ \sum\limits _{r=1}^{n}{{\Delta _{r}}}= \begin{vmatrix} \sum\limits_1^{n}{(r-1)} & n & 6 \\ \sum\limits_1^{n}{{{(r-1)}^{2}}} & 2n^{2} & 4n-2 \\ \sum\limits_1^{n}{{{(r-1)}^{3}}} & 3n^{2} & 3n^{2}-3n \\ \end{vmatrix} $

$ = \begin{vmatrix} \frac{1}{2}(n-1)n & n & 6 \\ \frac{1}{6}(n-1)n(2n-1) & 2n^{2} & 4n-2 \\ \frac{1}{4}{{(n-1)}^{2}}n^{2} & 3n^{3} & 3n^{2}-3n \\ \end{vmatrix} $ Taking $ \frac{1}{12}n(n-1) $ common from $ C_1 $ and n common from $ C_2 $ , we get $ \sum{{\Delta _{r}}=\frac{1}{12}n^{2}(n-1)\times \begin{vmatrix} 6 & 1 & 6 \\ 2(2n-1) & 2n & 2(2n-1) \\ 3n(n-1) & 3n^{2} & 3n(n-1) \\ \end{vmatrix}} $

$ =0[\because C_1andC_3areidentical] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें