Determinants Matrices Question 78

Question: If $ A \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ \end{bmatrix} , $ then the value of the determinant $ |A^{2009}-5A^{2008}| $ is

Options:

A) $ -6 $

B) $ -5 $

C) $ -4 $

D) $ 4 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Given, $ A= \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ \end{bmatrix} $
    $ \Rightarrow | A |=5-6=-1 $
    $ \therefore | A^{2009}-5A^{2008} |=| A^{2008} || A-5I | $

$ ={{(-1)}^{2008}}| \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \\ \end{bmatrix} |= \begin{vmatrix} -4 & 2 \\ 3 & 0 \\ \end{vmatrix}=-6 $