Determinants Matrices Question 79

Question: If B, C are square matrices of order n and if $ A=B+C,BC=CB,C^{2}=0 $ , then for any positive integer $ N,{A^{N+1}}=B^{K}[B+(N+1)C], $ then K/N is

Options:

A) 1

B) ½

C) 2

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We have, BC = CB, and $ {A^{N+1}}={{(B+C)}^{N+1}} $

$ {{=}^{N+1}}C_0{B^{N+1}}{{+}^{N+1}}C_1B^{N}C{{+}^{N+1}}C_2{B^{N-1}}C^{2}+ $

$ ….+{{}^{N+1}}C _{r}{B^{N+1-r}}C _{r}+….. $ But given that $ C^{2}=0\Rightarrow C^{3}=C^{4}=…=C^{r}=0 $ Hence, $ {A^{N+1}}={{}^{N+1}}C _{N}{B^{N+1}}+{{}^{N+1}}C_1B^{N}C $

$ ={B^{N+1}}+(N+1)B^{N}C=B^{N}[B+(N+1)C] $ Thus $ K=N $