Determinants Matrices Question 80
Question: If then $ A{{(\alpha ,\beta )}^{-1}} $ is equal to
Options:
A) $ A(-\alpha ,-\beta ) $
B) $ A(-\alpha ,\beta ) $
C) $ A(\alpha ,-\beta ) $
D) $ A(\alpha ,\beta ) $
Show Answer
Answer:
Correct Answer: A
Solution:
- [a] we have, $ A{{(\alpha ,\beta )}^{-1}}=\frac{1}{{e^{\beta }}} \begin{bmatrix} {e^{\beta }}\cos \alpha & -{e^{\beta }}\sin \alpha & 0 \\ {e^{\beta }}\sin \alpha & {e^{\beta }}\cos \alpha & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $
$ =A(-\alpha ,-\beta ) $