Determinants Matrices Question 80

Question: If then $ A{{(\alpha ,\beta )}^{-1}} $ is equal to

Options:

A) $ A(-\alpha ,-\beta ) $

B) $ A(-\alpha ,\beta ) $

C) $ A(\alpha ,-\beta ) $

D) $ A(\alpha ,\beta ) $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] we have, $ A{{(\alpha ,\beta )}^{-1}}=\frac{1}{{e^{\beta }}} \begin{bmatrix} {e^{\beta }}\cos \alpha & -{e^{\beta }}\sin \alpha & 0 \\ {e^{\beta }}\sin \alpha & {e^{\beta }}\cos \alpha & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $

$ =A(-\alpha ,-\beta ) $