Determinants Matrices Question 81

Question: If $ f(x)= \begin{vmatrix} {2^{-x}} & {e^{x{\log _{e}}2}} & x^{2} \\ {2^{-3x}} & {e^{3x{\log _{e}}2}} & x^{4} \\ {2^{-5x}} & {e^{5x{\log _{e}}2}} & 1 \\ \end{vmatrix}, $ then

Options:

A) $ f(x)+f(-x)=0 $

B) $ f(x)-f(-x)=0 $

C) $ f(x)+f(-x)=2 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ f(x)= \begin{vmatrix} {2^{-x}} & 2^{x} & x^{2} \\ {2^{-3x}} & 2^{3x} & x^{4} \\ {2^{-5x}} & 2^{5x} & 1 \\ \end{vmatrix} $
    $ \therefore f(-x) \begin{vmatrix} 2^{x} & {2^{-x}} & x^{2} \\ 2^{3x} & {2^{-3x}} & x^{4} \\ 2^{5x} & {2^{-5x}} & 1 \\ \end{vmatrix}=-f(x) $