Determinants Matrices Question 83

Question: If in a triangle ABC, $ \begin{vmatrix} 1 & \sin A & {{\sin }^{2}}A \\ 1 & \sin B & {{\sin }^{2}}B \\ 1 & \sin C & {{\sin }^{2}}C \\ \end{vmatrix}=0 $ then the triangle is

Options:

A) Equilateral or isosceles

B) Equilateral or right-angled

C) Right angled or isosceles

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ \begin{vmatrix} 1 & \sin A & {{\sin }^{2}}A \\ 1 & \sin B & {{\sin }^{2}}B \\ 1 & \sin C & {{\sin }^{2}}C \\ \end{vmatrix}=0 $
    $ \Rightarrow (sinA-sinB)(sinB-sinC)(sinC-sinA)=0 $
    $ \Rightarrow \sin A=\sin Bor\sin B=\sin Cor\sin C=\sin A $
    $ \therefore $ at least two of A, B, C are equal. Hence the triangle is isosceles or equilateral.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें