Determinants Matrices Question 85

Question: If A, B, and C are the angles of a triangle and $ \begin{vmatrix} 1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+{{\sin }^{2}}A & \sin B+{{\sin }^{2}}B & \sin C+{{\sin }^{2}}C \\ \end{vmatrix}=0, $ then the triangle must be

Options:

A) Isosceles

B) Equilateral

C) Right-angled

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Using $ C_2\to C_2-C_1 $ and $ C_3\to C_3-C_1 $ in the given determinant, we have $ \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 1+\sin A & \sin B-\sin A & \sin C-\sin A \\ \sin A+{{\sin }^{2}}A & {{\sin }^{2}}B-{{\sin }^{2}}A & {{\sin }^{2}}C-{{\sin }^{2}}A \\ \end{vmatrix} $ Now taking $ \sin B-\sin A $ common from $ C_2 $ and sin C - sin A common from $ C_3, $ we have $ \Delta =(sinB-sinA)(sinC-sinA) $

$ \begin{vmatrix} 1 & 0 & 0 \\ 1+\sin A & 1 & 1 \\ \sin A+{{\sin }^{2}}A & \sin B+\sin A & \sin C+\sin A \\ \end{vmatrix} $

$ =(sinB-sinA)(sinC-sinA)(sinC-sinB) $ As the determinant is zero, we must have sin B = sin A or sin A or sin C = sin A or sin C = sin B, that is B = A or C = A or C = B. In all three cases we will have an isosceles triangle.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें