Determinants Matrices Question 88
Question: $ A= \begin{vmatrix} 2a & 3r & x \\ 4b & 6s & 2y \\ -2c & -3t & -z \\ \end{vmatrix}=\lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \\ \end{vmatrix}, $ then what is the value of $ \lambda $ -
Options:
A) $ 12 $
B) $ -12 $
C) $ 7 $
D) $ -7 $
Show Answer
Answer:
Correct Answer: B
Solution:
- [b] Given,   $  \begin{vmatrix}    2a & 3r & x  \\    4b & 6s & 2y  \\    -2c & -3t & -z  \\ \end{vmatrix}=\lambda  \begin{vmatrix}    a & r & x  \\    b & s & y  \\    c & t & z  \\ \end{vmatrix} $    Taking 2 common from   $ C_1 $    and 3 from   $ C_2 $    in LHS
 $ \therefore 2\times 3 \begin{vmatrix} a & r & x \\ 2b & 2s & 2y \\ -c & -t & -z \\ \end{vmatrix}=\lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \\ \end{vmatrix} $ Taking 2 common from $ R_2 $ and $ -1 $ from $ R_3 $ in LHS
 $ \therefore -12 \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \\ \end{vmatrix}=\lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \\ \end{vmatrix} $
 $ \Rightarrow \lambda =-12 $
 BETA
  BETA 
             
             
           
           
           
          