Determinants Matrices Question 9

Question: If $ f(x)=a+bx+cx^{2} $ and $ \alpha ,\beta ,\gamma $ are the roots of the equation $ x^{3}=1, $ then is equal to

Options:

A) $ f(\alpha )+f(\beta )+f(\gamma ) $

B) $ f(\alpha )f(\beta )+f(\beta )f(\gamma )+f(\gamma )f(\alpha ) $

C) $ f(\alpha )f(\beta )f(\gamma ) $

D) $ f(\alpha )f(\beta )f(\gamma ) $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [d] $=-(a^{3}+b^{3}+c^{3}-abc) $

$ =-(a+b+c)(a+b{{\omega }^{2}}+c\omega ) $

$ (a+b\omega +c{{\omega }^{2}}) $ (Where $ \omega $ is cube roots of unity) $ [\therefore \alpha =1,\beta =\omega ,\gamma ={{\omega }^{2}}] $

$ =-f(\alpha )f(\beta )f(\gamma ) $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index