Determinants Matrices Question 92
Question: If x, y, z are complex numbers, and $ \Delta = \begin{vmatrix} 0 & -y & -z \\ {\bar{y}} & 0 & -x \\ {\bar{z}} & {\bar{x}} & 0 \\ \end{vmatrix} $ then $ \Delta $ is
Options:
A) Purely real
B) Purely imaginary
C) Complex
D) 0
Show Answer
Answer:
Correct Answer: B
Solution:
- [b] We have   $ \overline{\Delta }= \begin{vmatrix}    0 & -\overline{y} & -\overline{z}  \\    y & 0 & -\overline{x}  \\    z & x & 0  \\ \end{vmatrix}= \begin{vmatrix}    0 & y & z  \\    -\overline{y} & 0 & x  \\    -\overline{z} & -\overline{x} & 0  \\ \end{vmatrix} $    [Interchanging rows and columns]   $ ={{(-1)}^{3}} \begin{vmatrix}    0 & -y & -z  \\    \overline{y} & 0 & -x  \\    \overline{z} & \overline{x} & 0  \\ \end{vmatrix} $    [Taking -1 common from each row]   $ =-\Delta  $   
 $ \therefore \overline{\Delta }+\Delta =0\Rightarrow 2Re(\Delta )=0 $
 $ \therefore \Delta $ is purely imaginary.
 BETA
  BETA 
             
             
           
           
           
          