Determinants Matrices Question 95

If A and B be two square matrices of order $ n $ whose all the elements are essentially positive integers then the minimum value of $ tr\text{ (}AB^{2}) $ is equal to

Options:

A) $ {{\lambda }^{3}} $

B) $ {{\lambda }^{2}} $

C) $ 2{{\lambda }^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ tr(A)=\sum\limits _{i=1}^{n}a _{ii}\ge \lambda \sum\limits _{i=1}^{\lambda }a _{ii}\ge \lambda \sum\limits _{i=1}^{\lambda }a _{ij}\ge 1i,j} $ and $ tr(MN^{2})\neq{tr(M)}{{{tr(N)}}^{2}} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index