Determinants Matrices Question 99

Question: Consider the matrices $ A= \begin{bmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \\ \end{bmatrix} ,B=[ \begin{aligned} & \begin{matrix} 2 & 4 \\ \end{matrix} \\ & \begin{matrix} 0 & 1 \\ \end{matrix} \\ & \begin{matrix} -1 & 2 \\ \end{matrix} \\ \end{aligned} ],C= \begin{bmatrix} 3 \\ 1 \\ 2 \\ \end{bmatrix} $ Out of the given matrix products, which one is not defined.

Options:

A) $ {{(AB)}^{T}}C $

B) $ C^{T}C{{(AB)}^{T}} $

C) $ C^{T}AB $

D) $ A^{T}ABB^{T}C $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ A\to 3\times 3,B\to 3\times 2,C\to 3\times 1 $

$ AB\to 3\times 2\Rightarrow {{(AB)}^{T}}=2\times 3\Rightarrow {{(AB)}^{T}}C $ is defined
$ \Rightarrow C^{T}\to 1\times 3,\Rightarrow C^{T}C\to 1\times 1 $ Hence $ C^{T}C{{(AB)}^{T}} $ is not defined. Now, $ C^{T}AB $ is also defined. $ A^{T}\to 3\times 3,B^{T}\to 2\times 3;A^{T}A\to 3\times 3 $

$ BB^{T}\to 3\times 3\Rightarrow A^{T}ABB^{T}\to 3\times 3 $
$ \Rightarrow A^{T}ABB^{T}C $ is defined



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें