Differential Equations Question 100

Question: The differential equation whose solution is $ y=A\sin x+B\cos x, $ is

[CEE 1993; Kerala (Engg.) 2002]

Options:

A) $ \frac{d^{2}y}{dx^{2}}+y=0 $

B) $ \frac{d^{2}y}{dx^{2}}-y=0 $

C) $ \frac{dy}{dx}+y=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=A\sin x+B\cos x $

Therefore $ \frac{dy}{dx}=A\cos x-B\sin x $

Therefore $ \frac{d^{2}y}{dx^{2}}=-A\sin x-B\cos x $

$ =-(A\sin x+B\cos x)=-y $

Therefore $ \frac{d^{2}y}{dx^{2}}+y=0 $ is the required differential equation.