Differential Equations Question 101

Question: The solution of the equation $ \frac{dy}{dx}=\frac{1}{x+y+1} $ is

Options:

A) $ x=ce^{y}-y-2 $

B) $ y=x+ce^{y}-2 $

C) $ x+ce^{y}-y-2=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}=\frac{1}{x+y+1} $

Therefore $ \frac{dx}{dy}=x+y+1 $

Therefore $ \frac{dx}{dy}-x=y+1 $

It is linear equation, therefore I.F. $ ={e^{\int _{{}}^{{}}{-1dy}}}={e^{-y}} $

Hence the solution of the equation is
$ x.{e^{-y}}=\int _{{}}^{{}}{(y+1){e^{-y}}}dy+c $

Therefore $ x=ce^{y}-y-2 $ .