Differential Equations Question 104

Question: The differential equation for all the straight lines which are at a unit distance from the origin is

[MP PET 1993]

Options:

A) $ {{( y-x\frac{dy}{dx} )}^{2}}=1-{{( \frac{dy}{dx} )}^{2}} $

B) $ {{( y+x\frac{dy}{dx} )}^{2}}=1+{{( \frac{dy}{dx} )}^{2}} $

C) $ {{( y-x\frac{dy}{dx} )}^{2}}=1+{{( \frac{dy}{dx} )}^{2}} $

D) $ {{( y+x\frac{dy}{dx} )}^{2}}=1-{{( \frac{dy}{dx} )}^{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Since the equation of lines whose distance from origin is unit, is given by $ x\cos \alpha +y\sin \alpha =1 $

…..(i) Differentiate w.r.t. x, we get $ \cos \alpha +\frac{dy}{dx}\sin \alpha =0 $ …..(ii) On eliminating the $ ‘\alpha ’ $ with the help of (i) and (ii) i.e., (i) -x × (ii)

Therefore $ \sin \alpha ( y-x\frac{dy}{dx} )=1 $

Therefore $ ( y-x\frac{dy}{dx} )=cosec\alpha $ …..(iii) Also (ii)

Therefore $ \frac{dy}{dx}=-\cot \alpha $

Therefore $ {{( \frac{dy}{dx} )}^{2}}={{\cot }^{2}}\alpha $

…..(iv) Therefore by (iii) and (iv), $ 1+{{( \frac{dy}{dx} )}^{2}}={{( y-x\frac{dy}{dx} )}^{2}} $ .