Differential Equations Question 105

Question: If $ y=c{e^{{{\sin }^{-1}}x}} $ , then corresponding to this the differential equation is

Options:

A) $ \frac{dy}{dx}=\frac{y}{\sqrt{1-x^{2}}} $

B) $ \frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}} $

$ $

C) $ \frac{dy}{dx}=\frac{x}{\sqrt{1-x^{2}}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=c{e^{{{\sin }^{-1}}x}} $ . Differentiate it w.r.t. x, we get $ \frac{dy}{dx}=c{e^{{{\sin }^{-1}}x}}.\frac{1}{\sqrt{1-x^{2}}}=\frac{y}{\sqrt{1-x^{2}}} $ or $ \frac{dy}{dx}=\frac{y}{\sqrt{1-x^{2}}} $ .