Differential Equations Question 105
Question: If $ y=c{e^{{{\sin }^{-1}}x}} $ , then corresponding to this the differential equation is
Options:
A) $ \frac{dy}{dx}=\frac{y}{\sqrt{1-x^{2}}} $
B) $ \frac{dy}{dx}=\frac{1}{\sqrt{1-x^{2}}} $
$ $
C) $ \frac{dy}{dx}=\frac{x}{\sqrt{1-x^{2}}} $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ y=c{e^{{{\sin }^{-1}}x}} $ . Differentiate it w.r.t. x, we get $ \frac{dy}{dx}=c{e^{{{\sin }^{-1}}x}}.\frac{1}{\sqrt{1-x^{2}}}=\frac{y}{\sqrt{1-x^{2}}} $ or $ \frac{dy}{dx}=\frac{y}{\sqrt{1-x^{2}}} $ .