Differential Equations Question 109

Question: The differential equation whose solution is $ y=c_1\cos ax+c_2\sin ax $ is (Where $ c_1,\ c_2 $ are arbitrary constants)

[MP PET 1996]

Options:

A) $ \frac{d^{2}y}{dx^{2}}+y^{2}=0 $

B) $ \frac{d^{2}y}{dx^{2}}+a^{2}y=0 $

C) $ \frac{d^{2}y}{dx^{2}}+ay^{2}=0 $

D) $ \frac{d^{2}y}{dx^{2}}-a^{2}y=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Solution is $ y=c_1\cos ax+c_2\sin ax $

Differentiate it w.r.t. x, we get $ \frac{dy}{dx}=-c_1a\sin ax+c_2a\cos ax $

Again $ \frac{d^{2}y}{dx^{2}}=-c_1a^{2}\cos ax-c_2a^{2}\sin ax $

$ \frac{d^{2}y}{dx^{2}}=-a^{2}(c_1\cos ax+c_2\sin ax)\Rightarrow \frac{d^{2}y}{dx^{2}}=-a^{2}y $

or $ \frac{d^{2}y}{dx^{2}}+a^{2}y=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें