Differential Equations Question 109

Question: The differential equation whose solution is $ y=c_1\cos ax+c_2\sin ax $ is (Where $ c_1,\ c_2 $ are arbitrary constants)

[MP PET 1996]

Options:

A) $ \frac{d^{2}y}{dx^{2}}+y^{2}=0 $

B) $ \frac{d^{2}y}{dx^{2}}+a^{2}y=0 $

C) $ \frac{d^{2}y}{dx^{2}}+ay^{2}=0 $

D) $ \frac{d^{2}y}{dx^{2}}-a^{2}y=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Solution is $ y=c_1\cos ax+c_2\sin ax $

Differentiate it w.r.t. x, we get $ \frac{dy}{dx}=-c_1a\sin ax+c_2a\cos ax $

Again $ \frac{d^{2}y}{dx^{2}}=-c_1a^{2}\cos ax-c_2a^{2}\sin ax $

$ \frac{d^{2}y}{dx^{2}}=-a^{2}(c_1\cos ax+c_2\sin ax)\Rightarrow \frac{d^{2}y}{dx^{2}}=-a^{2}y $

or $ \frac{d^{2}y}{dx^{2}}+a^{2}y=0 $ .