Differential Equations Question 114

Question: The slope of the tangent at (x, y) to a curve passing through a point (2, 1) is $ \frac{x^{2}+y^{2}}{2xy} $ , then the equation of the curve is

[MP PET 2002]

Options:

A) $ 2(x^{2}-y^{2})=3x $

B) $ 2(x^{2}-y^{2})=6y $

C) $ x(x^{2}-y^{2})=6 $

D) $ x(x^{2}+y^{2})=10 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}=\frac{x^{2}+y^{2}}{2xy} $ . Put $ y=vx $

Therefore $ v+x.\frac{dv}{dx}=\frac{x^{2}+v^{2}x^{2}}{2vx^{2}} $

$ \frac{2v}{1-v^{2}}.dv=\frac{dx}{x} $

Integrating both sides, $ -\log (1-v^{2})=\log x+\log c $

$ -\log ( 1-\frac{y^{2}}{x^{2}} )=\log x+\log c $

……..(i) This passes through $ (2,1) $

$ -\log ( 1-\frac{1}{4} )=\log 2+\log c $

Therefore $ c=\frac{2}{3} $

From equation (i), $ \log ( \frac{x^{2}}{x^{2}-y^{2}} )=\log xc $

$ 2(x^{2}-y^{2})=3x $ .