Differential Equations Question 114

Question: The slope of the tangent at (x, y) to a curve passing through a point (2, 1) is $ \frac{x^{2}+y^{2}}{2xy} $ , then the equation of the curve is

[MP PET 2002]

Options:

A) $ 2(x^{2}-y^{2})=3x $

B) $ 2(x^{2}-y^{2})=6y $

C) $ x(x^{2}-y^{2})=6 $

D) $ x(x^{2}+y^{2})=10 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dy}{dx}=\frac{x^{2}+y^{2}}{2xy} $ . Put $ y=vx $

Therefore $ v+x.\frac{dv}{dx}=\frac{x^{2}+v^{2}x^{2}}{2vx^{2}} $

$ \frac{2v}{1-v^{2}}.dv=\frac{dx}{x} $

Integrating both sides, $ -\log (1-v^{2})=\log x+\log c $

$ -\log ( 1-\frac{y^{2}}{x^{2}} )=\log x+\log c $

……..(i) This passes through $ (2,1) $

$ -\log ( 1-\frac{1}{4} )=\log 2+\log c $

Therefore $ c=\frac{2}{3} $

From equation (i), $ \log ( \frac{x^{2}}{x^{2}-y^{2}} )=\log xc $

$ 2(x^{2}-y^{2})=3x $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें