Differential Equations Question 116

Question: The differential equation of the family of curves $ y^{2}=4a(x+a) $ , where a is an arbitrary constant, is

Options:

A) $ y[ 1+{{( \frac{dy}{dx} )}^{2}} ]=2x\frac{dy}{dx} $

B) $ y[ 1-{{( \frac{dy}{dx} )}^{2}} ]=2x\frac{dy}{dx} $

C) $ \frac{d^{2}y}{dx^{2}}+2\frac{dy}{dx}=0 $

D) $ {{( \frac{dy}{dx} )}^{3}}+3\frac{dy}{dx}+y=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ y^{2}=4a(x+a) $ . Differentiating, $ 2y( \frac{dy}{dx} )=4a $

Eliminating a from (i) and (ii), required equation is $ y[ 1-{{( \frac{dy}{dx} )}^{2}} ]=2x\frac{dy}{dx} $ .