Differential Equations Question 117

Question: The differential equation of the family of curves $ v=\frac{A}{r}+B, $ where A and B are arbitrary constants, is

Options:

A) $ \frac{d^{2}v}{dr^{2}}+\frac{1}{r}\frac{dv}{dr}=0 $

B) $ \frac{d^{2}v}{dr^{2}}-\frac{2}{r}\frac{dv}{dr}=0 $

C) $ \frac{d^{2}v}{dr^{2}}+\frac{2}{r}\frac{dv}{dr}=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{dv}{dr}=-\frac{A}{r^{2}}+0 $

Therefore $ \frac{d^{2}v}{dr^{2}}=\frac{2A}{r^{3}} $

Therefore $ \frac{d^{2}v}{dr^{2}}=\frac{2}{r}( \frac{A}{r^{2}} ) $

Therefore $ \frac{d^{2}v}{dr^{2}}=\frac{2}{r}( -\frac{dv}{dr} ) $

Therefore $ \frac{d^{2}v}{dr^{2}}+\frac{2}{r}\frac{dv}{dr}=0 $ .