Differential Equations Question 12

Question: The solution of the differential equation $ (1-x^{2})(1-y)dx=xy(1+y)dy $ is

Options:

A) $ \log [x{{(1-y)}^{2}}]=\frac{x^{2}}{2}+\frac{y^{2}}{2}-2y+c $

B) $ \log [x{{(1-y)}^{2}}]=\frac{x^{2}}{2}-\frac{y^{2}}{2}+2y+c $

C) $ \log [x{{(1+y)}^{2}}]=\frac{x^{2}}{2}+\frac{y^{2}}{2}+2y+c $

D) $ \log [x{{(1-y)}^{2}}]=\frac{x^{2}}{2}-\frac{y^{2}}{2}-2y+c $

Show Answer

Answer:

Correct Answer: D

Solution:

$ (1-x^{2})(1-y)dx=xy(1+y)dy $

Therefore $ \int _{{}}^{{}}{\frac{y(1+y)}{(1-y)}dy}=\int _{{}}^{{}}{\frac{(1-x^{2})}{x}dx} $ ; Now integrate it.