Differential Equations Question 121

Question: The differential equation found by the elimination of the arbitrary constant K from the equation $ y=(x+K){e^{-x}} $ is

Options:

A) $ \frac{dy}{dx}-y={e^{-x}} $

B) $ \frac{dy}{dx}-ye^{x}=1 $

C) $ \frac{dy}{dx}+ye^{x}=1 $

D) $ \frac{dy}{dx}+y={e^{-x}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=(x+K){e^{-x}} $

Therefore $ \frac{dy}{dx}=-(x+K){e^{-x}}+{e^{-x}} $

Therefore $ \frac{dy}{dx}=-y+{e^{-x}} $

Therefore $ \frac{dy}{dx}+y={e^{-x}} $ .