Differential Equations Question 122

Question: The equation of the curve through the point (1,0) and whose slope is $ \frac{y-1}{x^{2}+x} $ is

Options:

A) $ (y-1)(x+1)+2x=0 $

B) $ 2x(y-1)+x+1=0 $

C) $ x(y-1)(x+1)+2=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Slope $ =\frac{dy}{dx} $

Therefore $ \frac{dy}{dx}=\frac{y-1}{x^{2}+x} $

Therefore $ \frac{dy}{y-1}=\frac{dx}{x^{2}+x} $

Therefore $ \int _{{}}^{{}}{\frac{1}{y-1}}dy=\int _{{}}^{{}}{( \frac{1}{x}-\frac{1}{x+1} )}dx+c $

Therefore $ \frac{(y-1)(x+1)}{x}=k $

Putting $ x=1 $ , $ y=0 $ , we get $ k=-2 $

Hence the equation is $ (y-1)(x+1)+2x=0 $ .