Differential Equations Question 126

Question: The elimination of the arbitrary constants A, B and C from $ y=A+Bx+C{e^{-x}} $ leads to the differential equation

[AMU 1999]

Options:

A) $ {{{y}’}’}’-{y}’=0 $

B) $ {{{y}’}’}’-{{y}’}’+{y}’=0 $

C) $ {{{y}’}’}’+{{y}’}’=0 $

D) $ {{y}’}’+{{y}’}’-{y}’=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ y=A+Bx+C{e^{-x}} $ ……..(i)

Therefore $ \frac{dy}{dx}=B-C{e^{-x}} $ ……..(ii)

Therefore $ \frac{d^{2}y}{dx^{2}}=C{e^{-x}} $ ……..(iii) and $ \frac{d^{3}y}{dx^{3}}=-C{e^{-x}} $ …….(iv)

Adding (iii) and (iv) we get,

$ \frac{d^{3}y}{dx^{3}}+\frac{d^{2}y}{dx^{2}}=0 $ i.e., $ {y}’’’+{y}’’=0 $ .