Differential Equations Question 13

Question: The differential equation which represents the three parameter family of circles $ x^{2}+y^{2}+2gx+2fy+c=0 $ is

Options:

A) $ y’’’=\frac{3y’y’{{’}^{2}}}{1+y{{’}^{2}}} $

B) $ y’’’=\frac{3y’{{’}^{2}}}{1+y{{’}^{2}}} $

C) $ y’’’=\frac{3y’}{1+y{{’}^{2}}} $

D) $ y’’’=\frac{3y’}{1-y{{’}^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] To eliminate the parameters g, f and c differentiate thrice w.r.t. x, $ x+yy’+g+fy’=0 $

  • (1) $ 1+y{{’}^{2}}+yy’’+fy’’=0 $

  • (2) $ 3y’y’’+yy’’’+fy’’’=0 $

  • (3) (1) $ y’’’-(2)y’’ $ gives,