Differential Equations Question 130

Question: If $ y=a{x^{n+1}}+b{x^{-n}}, $ then $ x^{2}\frac{d^{2}y}{dx^{2}} $ equals to

[RPET 2001]

Options:

A) $ n(n-1)y $

B) $ n(n+1)y $

C) ny

D) n2y

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=a{x^{n+1}}+b{x^{-n}} $

Differentiate with respect to x , $ \frac{dy}{dx}=a(n+1)x^{n}-bn{x^{-n-1}} $

Again differentiate, $ \frac{d^{2}y}{dx^{2}}=an(n+1){x^{n-1}}+bn(n+1){x^{-n-2}} $

Therefore $ x^{2}\frac{d^{2}y}{dx^{2}}=an(n+1){x^{n+1}}+bn(n+1){x^{-n}} $

Therefore $ x^{2}\frac{d^{2}y}{dx^{2}}=n(n+1)y $ .