Differential Equations Question 133

Question: If $ x^{2}+y^{2}=1 $ then $ ( {y}’=\frac{dy}{dx},{y}’’=\frac{d^{2}y}{dx^{2}} ) $

[IIT Screening 2000]

Options:

A) $ y{y}’’-2{{({y}’)}^{2}}+1=0 $

B) $ y{y}’’+{{({y}’)}^{2}}+1=0 $

C) $ y{y}’’-{{({y}’)}^{2}}-1=0 $

D) $ y{y}’’+2{{({y}’)}^{2}}+1=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Differentiating w.r.t. $ x, $

$ \frac{dy}{dx}=1+x+y+xy $ or $ x+y{y}’=0 $

Differentiating again w.r.t. $ x, $

$ 1+{{{y}’}^{2}}+y{y}’’=0 $ .