Differential Equations Question 134

Question: Differential equation of $ y=\sec ({{\tan }^{-1}}x) $ is

[UPSEAT 2002]

Options:

A) $ (1+x^{2})\frac{dy}{dx}=y+x $

B) $ (1+x^{2})\frac{dy}{dx}=y-x $

C) $ (1+x^{2})\frac{dy}{dx}=xy $

D) $ (1+x^{2})\frac{dy}{dx}=\frac{x}{y} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\sec ({{\tan }^{-1}}x) $

$ \frac{dy}{dx}=\sec ({{\tan }^{-1}}x)\tan ({{\tan }^{-1}}x).\frac{1}{1+x^{2}} $

$ =\frac{xy}{1+x^{2}} $

Therefore $ (1+x^{2})\frac{dy}{dx}=xy $ .