Differential Equations Question 135

Question: The solution of $ \frac{dy}{dx}=| x | $ is:

Options:

A) $ y=\frac{x| x |}{2}+c $

B) $ y=\frac{| x |}{2}+c $

C) $ y=\frac{x^{2}}{2}+c $

D) $ y=\frac{x^{3}}{2}+c $ Where c is an arbitrary constant

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \frac{dy}{dx}=| x | $

$ \frac{dy}{dx}=x $ for $ x\ge 0; $

$ \frac{dy}{dx}=-x $ for $ x<0; $

$ \int{dy=\int{xdx}} $

$ y=\frac{x^{2}}{2}+C_1 $ ……. (i) $ \int{dy=-1xdx} $

$ y=-\frac{x^{2}}{2}+C_1 $ ……. (ii)

From (i) and (ii) $ y=\frac{x| x |}{2}+C $