Differential Equations Question 14

Question: The solution of the differential equation $ (x-y^{2}x)dx=(y-x^{2}y)dy $ is

[DSSE 1984]

Options:

A) $ (1-y^{2})=c^{2}(1-x^{2}) $

B) $ (1+y^{2})=c^{2}(1-x^{2}) $

C) $ (1+y^{2})=c^{2}(1+x^{2}) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Given equation can be written as $ \frac{x}{1-x^{2}}dx=\frac{y}{1-y^{2}}dy $

On integrating we get $ -\frac{1}{2}\log (1-x^{2})=-\frac{1}{2}\log (1-y^{2})+\log c $

Therefore $ \log (1-x^{2})-\log (1-y^{2})=-2\log c $

Therefore $ \frac{1-x^{2}}{1-y^{2}}={c^{-2}} $

Hence $ (1-y^{2})=c^{2}(1-x^{2}) $ .