Differential Equations Question 142

Question: The solution of the differential equation $ x^{2}\frac{dy}{dx}=x^{2}+xy+y^{2} $ is

Options:

A) $ {{\tan }^{-1}}( \frac{y}{x} )=\log x+c $

B) $ {{\tan }^{-1}}( \frac{y}{x} )=-\log x+c $

C) $ {{\sin }^{-1}}( \frac{y}{x} )=\log x+c $

D) $ {{\tan }^{-1}}( \frac{x}{y} )=\log x+c $

Show Answer

Answer:

Correct Answer: A

Solution:

It is homogeneous equation which can be written in the form $ \frac{dy}{dx}=\frac{x^{2}+xy+y^{2}}{x^{2}} $

Now put $ y=vx $ and $ \frac{dy}{dx}=v+x\frac{dv}{dx} $

Therefore, $ v+x\frac{dv}{dx}=\frac{x^{2}+vx^{2}+v^{2}x^{2}}{x^{2}}=1+v+v^{2} $

Therefore $ x\frac{dv}{dx}=1+v^{2} $

Therefore $ \frac{dv}{1+v^{2}}=\frac{dx}{x} $

Now integrating both sides, we get $ {{\tan }^{-1}}v=\log x+c $

Therefore $ {{\tan }^{-1}}( \frac{y}{x} )=\log x+c $

$ {\because y=vx\Rightarrow v=y/x} $