Differential Equations Question 145

Question: The solution of the equation $ \frac{dy}{dx}=\frac{x+y}{x-y} $ is

[AI CBSE 1990]

Options:

A) $ c{{(x^{2}+y^{2})}^{1/2}}+{e^{{{\tan }^{-1}}(y/x)}}=0 $

B) $ c{{(x^{2}+y^{2})}^{1/2}}={e^{{{\tan }^{-1}}(y/x)}} $

C) $ c(x^{2}-y^{2})={e^{{{\tan }^{-1}}(y/x)}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation, $ \frac{dy}{dx}=\frac{x+y}{x-y} $

It is a homogeneous equation so putting $ y=vx $

and $ \frac{dy}{dx}=v+x\frac{dv}{dx}, $ we get $ v+x\frac{dv}{dx}=\frac{x+vx}{x-vx}=\frac{1+v}{1-v} $

Therefore $ x\frac{dv}{dx}=\frac{1+v^{2}}{1-v} $

Therefore $ \frac{1}{x}dx=( \frac{1}{1+v^{2}}-\frac{v}{1+v^{2}} )dv $

Therefore $ {\log _{e}}x={{\tan }^{-1}}v-\frac{1}{2}\log (1+v^{2})+{\log _{e}}c $

Substituting $ v=\frac{y}{x}, $ we get $ {\log _{e}}x={{\tan }^{-1}}\frac{y}{x}-\frac{1}{2}\log [ 1+{{( \frac{y}{x} )}^{2}} ]+{\log _{e}}c $

Therefore $ c{{(x^{2}+y^{2})}^{1/2}}={e^{{{\tan }^{-1}}(y/x)}} $ .