Differential Equations Question 15

Question: The solution of $ (cosecx\log y)dy+(x^{2}y)dx=0 $ is

[AISSE 1986]

Options:

A) $ \frac{\log y}{2}+(2-x^{2})\cos x+2\sin x=c $

B) $ {{( \frac{\log y}{2} )}^{2}}+(2-x^{2})\cos x+2x\sin x=c $

C) $ {{\frac{(\log y)}{2}}^{2}}+(2-x^{2})\cos x+2x\sin x=c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ (\text{cosec }x\log y)dy+(x^{2}y)dx=0 $

Therefore $ \frac{1}{y}\log ydy=-x^{2}\sin xdx $

On integrating both sides, we get $ \frac{{{(\log y)}^{2}}}{2}+[x^{2}(-\cos x)+\int _{{}}^{{}}{2x\cos xdx}]=c $

Therefore $ \frac{{{(\log y)}^{2}}}{2}-x^{2}\cos x+2(x\sin x+\cos x)=c $

Therefore $ \frac{{{(\log y)}^{2}}}{2}+(2-x^{2})\cos x+2x\sin x=c $ .