Differential Equations Question 153

Question: The solution of the differential equation $ \frac{dy}{dx}=\frac{xy}{x^{2}+y^{2}} $ is

Options:

A) $ ay^{2}={e^{x^{2}/y^{2}}} $

B) $ ay={e^{x/y}} $

C) $ y={e^{x^{2}}}+{e^{y^{2}}}+c $

D) $ y={e^{x^{2}}}+y^{2}+c $

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ \frac{dy}{dx}=\frac{xy}{x^{2}+y^{2}} $ . Put $ y=vx $ ; $ \frac{dy}{dx}=v+x.\frac{dv}{dx} $

$ \therefore v+x\frac{dv}{dx}=\frac{(x)(vx)}{x^{2}+v^{2}x^{2}} $

Therefore $ v+x.\frac{dv}{dx}=\frac{v}{1+v^{2}} $

Therefore $ x\frac{dv}{dx}=\frac{-v^{3}}{1+v^{2}} $

Therefore $ \frac{(1+v^{2})}{v^{3}}dv=-\frac{dx}{x} $

Therefore $ ( \frac{1}{v^{3}}+\frac{1}{v} )dv=-\frac{dx}{x} $

Integrating both sides, $ \int _{{}}^{{}}{\frac{dv}{v^{3}}}+\int _{{}}^{{}}{\frac{dv}{v}}=-\int _{{}}^{{}}{\frac{dx}{x}} $

Therefore $ -\frac{1}{2v^{2}}+\log v=-\log x-\log c $

Therefore $ -\frac{x^{2}}{2y^{2}}+\log y=-\log c $

Therefore $ \log cy=\frac{x^{2}}{2y^{2}} $

Therefore $ cy={e^{x^{2}/2y^{2}}} $

Therefore $ c^{2}y^{2}={e^{x^{2}/y^{2}}} $

$ \therefore y^{2}a={e^{x^{2}/y^{2}}} $ , where $ c^{2}=a $ .