Differential Equations Question 154

Question: An integrating factor of the differential equation $ x\frac{dy}{dx}+y\log x=xe^{x}{x^{-\frac{1}{2}\log x}} $ , $ (x>0) $ is

[Kerala (Engg.) 2005]

Options:

A) $ {x^{\log x}} $

B) $ {{(\sqrt{x})}^{\log x}} $

C) $ {{(\sqrt{e})}^{\log x}} $

D) $ {e^{x^{2}}} $

E) $ x^{2}/2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}+( \frac{\log x}{x} )y=e^{x}{x^{-\frac{1}{2}\log x}} $ I.F. $ ={e^{\int{\frac{\log x}{x}dx}}}={e^{\frac{1}{2}{{(\log x)}^{2}}}}={{( {e^{\frac{1}{2}(\log x)}} )}^{\log x}} $

$ ={{( {e^{\log \sqrt{x}}} )}^{\log x}}={{(\sqrt{x})}^{\log x}} $