Differential Equations Question 156

Question: The solution of the equation $ \frac{dy}{dx}=\frac{y}{x}( \log \frac{y}{x}+1 ) $ is

Options:

A) $ \log ( \frac{y}{x} )=cx $

B) $ \frac{y}{x}=\log y+c $

C) $ y=\log y+1 $

D) $ y=xy+c $

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ \frac{dy}{dx}=\frac{y}{x}( \log \frac{y}{x}+1 ) $ . Put $ y=vx $

Therefore $ \frac{dy}{dx}=v+x.\frac{dv}{dx} $

$ \therefore v+x.\frac{dv}{dx}=v(\log v+1) $

$ v+x\frac{dv}{dx}=v\log v+v $

Therefore $ x\frac{dv}{dx}=v\log v $

Therefore $ \frac{dv}{v\log v}=\frac{dx}{x} $

Integrating both sides, $ \int _{{}}^{{}}{\frac{dv}{v\log v}}=\int _{{}}^{{}}{\frac{dx}{x}} $

$ \log \log v=\log x+\log c $
$ \Rightarrow $ $ \log v=xc $

Therefore $ \log (y/x)=xc $ .