Differential Equations Question 158

Question: Solution of differential equation $ \frac{dy}{dx}=\frac{y-x}{y+x} $ is

[MP PET 1997]

Options:

A) $ {\log _{e}}(x^{2}+y^{2})+2{{\tan }^{-1}}\frac{y}{x}+c=0 $

B) $ \frac{y^{2}}{2}+xy=xy-\frac{x^{2}}{2}+c $

C) $ ( 1+\frac{x}{y} )y=( 1-\frac{x}{y} )x+c $

D) $ y=x-2{\log _{e}}y+c $

Show Answer

Answer:

Correct Answer: A

Solution:

Put $ y=vx $

Therefore $ \frac{dy}{dx}=v+x\frac{dv}{dx} $

$ \therefore v+x\frac{dv}{dx}=\frac{v-1}{v+1} $

Therefore $ x\frac{dv}{dx}=\frac{v-1}{v+1}-v $

Therefore $ x\frac{dv}{dx}=-\frac{v^{2}+1}{v+1} $

Therefore $ \int _{{}}^{{}}{\frac{dx}{x}}=-\int _{{}}^{{}}{\frac{v+1}{v^{2}+1}}dv $

Therefore $ -{\log _{e}}x=\frac{1}{2}\int _{{}}^{{}}{\frac{2v}{v^{2}+1}}dv+\int _{{}}^{{}}{\frac{1}{v^{2}+1}}dv $

Therefore $ -{\log _{e}}x=\frac{1}{2}\log (v^{2}+1)+{{\tan }^{-1}}v+c $

Therefore $ -2{\log _{e}}x=\log ( \frac{x^{2}+y^{2}}{x^{2}} )+2{{\tan }^{-1}}( \frac{y}{x} )+c $

Therefore $ {\log _{e}}(x^{2}+y^{2})+2{{\tan }^{-1}}\frac{y}{x}+c=0 $ .