Differential Equations Question 159

Question: If $ {y}’=\frac{x-y}{x+y} $ , then its solution is

[MP PET 2000]

Options:

A) $ y^{2}+2xy-x^{2}=c $

B) $ y^{2}+2xy+x^{2}=c $

C) $ y^{2}-2xy-x^{2}=c $

D) $ y^{2}-2xy+x^{2}=c $

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ \frac{dy}{dx}=\frac{x-y}{x+y} $ . Put $ y=vx $

Therefore $ \frac{dy}{dx}=v+x\frac{dv}{dx} $

\ $ v+x\frac{dv}{dx}=\frac{x-vx}{x+vx} $

Therefore $ v+x\frac{dv}{dx}=\frac{1-v}{1+v} $

Therefore $ \frac{1+v}{2-{{(1+v)}^{2}}}dv=\frac{dx}{x} $

Integrating both sides, $ \int{\frac{1+v}{2-{{(1+v)}^{2}}}}dv=\int{\frac{dx}{x}} $

Put $ {{(1+v)}^{2}}=t\Rightarrow 2(1+v)dv=dt $

Therefore $ \frac{1}{2}\int _{{}}^{{}}{\frac{dt}{2-t}}=\int _{{}}^{{}}{\frac{dx}{x}} $

Therefore $ -\frac{1}{2}\log (2-t)=\log xc $

Therefore $ -\frac{1}{2}\log [2-{{(1+v)}^{2}}]=\log xc $

Therefore $ -\frac{1}{2}\log [-v^{2}-2v+1]=\log xc $

Therefore $ \log \frac{1}{\sqrt{1-2v-v^{2}}}=\log xc $

Therefore $ x^{2}c^{2}(1-2v-v^{2})=1 $

Therefore $ y^{2}+2xy-x^{2}=c_1 $ .