Differential Equations Question 16

Question: The solution of the differential equation $ \frac{dy}{dx}+y=\cos x $ is

[AISSE 1990]

Options:

A) $ y=\frac{1}{2}(\cos x+\sin x)+c{e^{-x}} $

B) $ y=\frac{1}{2}(\cos x-\sin x)+c{e^{-x}} $

C) $ y=\cos x+\sin x+c{e^{-x}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

It is linear equation of the form $ \frac{dy}{dx}+Py=Q $

So, I.F. $ ={e^{\int _{{}}^{{}}{1dx}}}=e^{x} $

Hence solution is $ y.e^{x}=\int _{{}}^{{}}{\cos x.e^{x}dx+c} $

Therefore $ y=\frac{1}{2}(\cos x+\sin x)+c{e^{-x}} $ .