Differential Equations Question 160

Question: The general solution of the differential equation $ (2x-y+1)dx+(2y-x+1)dy=0 $ is

[Karnataka CET 2005]

Options:

A) $ x^{2}+y^{2}+xy-x+y=c $

B) $ x^{2}+y^{2}-xy+x+y=c $

C) $ x^{2}-y^{2}+2xy-x+y=c $

D) $ x^{2}-y^{2}-2xy+x-y=c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ (2x-y+1)dx+(2y-x+1)dy=0 $

$ \frac{dy}{dx}=\frac{2x-y+1}{x-2y-1} $ , put $ x=X+h $ , $ y=Y+k $

$ \frac{dY}{dX}=\frac{2X-Y+2h-k+1}{X-2Y+h-2k-1} $

$ 2h-k+1=0 $

Therefore $ h-2k-1=0 $

On solving $ h=-1 $ , $ k=-1 $ ; \ $ \frac{dY}{dX}=\frac{2X-Y}{X-2Y} $

Put $ Y=vX $ ; \ $ \frac{dY}{dX}=v+X\frac{dv}{dX} $

$ v+X\frac{dv}{dX}=\frac{2X-vX}{X-2vX}=\frac{2-v}{1-2v} $

$ X\frac{dv}{dX}=\frac{2-2v+2v^{2}}{1-2v}=\frac{2(v^{2}-v+1)}{1-2v} $

\ $ \frac{dX}{X}=\frac{(1-2v)}{2(v^{2}-v+1)}dv $

Put $ v^{2}-v+1=t $

Therefore $ (2v-1)dv=dt $

\ $ \frac{dX}{X}=-\frac{dt}{2t} $ \ $ \log X=\log {t^{-1/2}}+\log c $

\ $ X={t^{-1/2}}c $

Therefore $ X={{(v^{2}-v+1)}^{-1/2}}.c $

$ X^{2}(v^{2}-v+1)= $ constant $ {{(x+1)}^{2}}( \frac{{{(y+1)}^{2}}}{{{(x+1)}^{2}}}-\frac{(y+1)}{x+1}+1 )= $ constant $ {{(y+1)}^{2}}-(y+1)(x+1)+{{(x+1)}^{2}}=c $

$ y^{2}+x^{2}-xy+x+y=c $ .